A269074 Number of nX7 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
72, 1204, 27042, 542112, 10778640, 210476400, 4064720816, 77785162880, 1477636398784, 27897108860960, 523921783242624, 9794822341611072, 182387895832407680, 3384281324193062016, 62600172035227164032
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..0..0..1..0..0..1. .0..1..0..1..0..0..1. .0..0..0..0..0..0..1 ..0..0..1..0..0..0..0. .1..0..0..1..0..0..0. .1..1..0..1..0..0..0 ..0..0..0..0..1..0..1. .0..0..0..0..0..1..0. .0..0..0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269075.
Formula
Empirical: a(n) = 60*a(n-1) -1352*a(n-2) +13344*a(n-3) -35948*a(n-4) -311480*a(n-5) +1985472*a(n-6) +1821840*a(n-7) -31021776*a(n-8) +4125984*a(n-9) +251967152*a(n-10) -46853056*a(n-11) -1173410880*a(n-12) -138650624*a(n-13) +2912101888*a(n-14) +1295316992*a(n-15) -3360870400*a(n-16) -2339016704*a(n-17) +1368141824*a(n-18) +1168457728*a(n-19) -291553280*a(n-20) -245170176*a(n-21) +45023232*a(n-22) +19922944*a(n-23) -4194304*a(n-24) for n>25
Comments