cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A269069 Number of n X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

2, 11, 123, 3288, 165607, 18220241, 4064720816, 1833956006577, 1778703508587227, 3374673365461249568, 14101540722268888633757, 114651904507399541002097761, 2060026489521744559823250922304, 72580676762280474254836112626897875
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Diagonal of A269075.

Examples

			Some solutions for n=4
..0..0..0..1. .0..0..1..0. .0..0..0..0. .0..0..1..0. .0..0..0..1
..0..0..0..1. .1..0..0..1. .1..0..0..0. .1..0..0..0. .1..0..0..1
..1..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..1..1. .1..0..0..0
..0..1..0..0. .0..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..1..0
		

Crossrefs

Cf. A269075.

A269070 Number of n X 3 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

7, 27, 123, 537, 2343, 10167, 43959, 189465, 814359, 3491691, 14937987, 63778065, 271799175, 1156345287, 4911870063, 20834207313, 88251723687, 373358554971, 1577691954507, 6659543294313, 28081651307943, 118299768626103
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0. .0..0..1. .0..1..0. .1..0..1. .1..0..1. .1..0..0. .1..0..1
..0..0..0. .0..1..0. .1..0..0. .0..0..0. .0..0..0. .1..0..1. .0..0..0
..1..0..0. .0..0..0. .1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0
..1..0..1. .1..0..1. .0..0..1. .0..0..1. .1..0..0. .0..0..0. .1..1..0
		

Crossrefs

Column 3 of A269075.

Formula

Empirical: a(n) = 10*a(n-1) - 31*a(n-2) + 24*a(n-3) + 21*a(n-4) - 18*a(n-5) - 9*a(n-6).
Empirical g.f.: x*(7 - 43*x + 70*x^2 - 24*x^3 - 9*x^4 - 9*x^5) / (1 - 5*x + 3*x^2 + 3*x^3)^2. - Colin Barker, Jan 18 2019

A269071 Number of n X 4 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

13, 76, 521, 3288, 20400, 123976, 742688, 4397376, 25791040, 150081504, 867569920, 4986765312, 28523566592, 162453499008, 921756644864, 5212543265792, 29388948548608, 165253519908352, 926962234179584, 5188178346090496
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Examples

			Some solutions for n=4:
..1..1..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1
..0..0..0..0. .0..0..1..0. .1..0..1..0. .0..0..1..0. .1..0..0..0
..1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..0
..0..0..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..0..1
		

Crossrefs

Column 4 of A269075.

Formula

Empirical: a(n) = 12*a(n-1) - 40*a(n-2) + 8*a(n-3) + 92*a(n-4) - 32*a(n-5) - 64*a(n-6) for n>7.
Empirical g.f.: x*(13 - 80*x + 129*x^2 - 28*x^3 - 20*x^4 - 48*x^5 + 4*x^6) / (1 - 6*x + 2*x^2 + 8*x^3)^2. - Colin Barker, Jan 18 2019

A269072 Number of nX5 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

23, 185, 1887, 17713, 165607, 1529241, 14011359, 127528641, 1154377943, 10400164377, 93314875007, 834244316721, 7434343205095, 66061046189497, 585498663953471, 5177144091416833, 45680435610848791, 402277442193052665
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Column 5 of A269075.

Examples

			Some solutions for n=4
..0..1..0..0..1. .1..0..0..1..0. .1..0..1..0..1. .1..0..1..0..1
..1..0..0..0..1. .1..0..1..0..0. .1..0..1..0..0. .0..0..1..0..1
..1..0..0..0..0. .1..0..0..0..1. .0..0..0..0..1. .0..1..0..0..1
..0..0..0..0..1. .0..0..0..0..1. .0..0..0..1..0. .0..0..0..0..1
		

Crossrefs

Cf. A269075.

Formula

Empirical: a(n) = 24*a(n-1) -198*a(n-2) +584*a(n-3) +137*a(n-4) -2864*a(n-5) +1132*a(n-6) +4336*a(n-7) -1391*a(n-8) -2280*a(n-9) +90*a(n-10) +200*a(n-11) -25*a(n-12)

A269073 Number of nX6 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

41, 489, 7477, 102545, 1383105, 18220241, 236272677, 3024972401, 38333973609, 481701017577, 6010309951205, 74542025956769, 919716929870465, 11296618314880209, 138204770920790229, 1684906034464128193
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Column 6 of A269075.

Examples

			Some solutions for n=4
..1..0..0..0..0..0. .0..0..1..0..0..1. .1..0..0..0..0..1. .0..0..1..0..1..0
..0..0..0..0..1..0. .1..0..0..1..0..0. .0..0..0..0..0..0. .1..0..1..0..0..0
..0..0..1..0..1..0. .1..0..0..0..0..0. .0..0..1..0..0..1. .0..0..0..0..1..0
..1..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1. .1..0..0..0..0..1
		

Crossrefs

Cf. A269075.

Formula

Empirical: a(n) = 28*a(n-1) -230*a(n-2) +192*a(n-3) +3805*a(n-4) -5776*a(n-5) -27808*a(n-6) +25744*a(n-7) +101333*a(n-8) -13916*a(n-9) -149690*a(n-10) -66848*a(n-11) +23183*a(n-12) +9888*a(n-13) -2304*a(n-14)

A269074 Number of nX7 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

72, 1204, 27042, 542112, 10778640, 210476400, 4064720816, 77785162880, 1477636398784, 27897108860960, 523921783242624, 9794822341611072, 182387895832407680, 3384281324193062016, 62600172035227164032
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Column 7 of A269075.

Examples

			Some solutions for n=3
..1..0..0..1..0..0..1. .0..1..0..1..0..0..1. .0..0..0..0..0..0..1
..0..0..1..0..0..0..0. .1..0..0..1..0..0..0. .1..1..0..1..0..0..0
..0..0..0..0..1..0..1. .0..0..0..0..0..1..0. .0..0..0..1..0..1..0
		

Crossrefs

Cf. A269075.

Formula

Empirical: a(n) = 60*a(n-1) -1352*a(n-2) +13344*a(n-3) -35948*a(n-4) -311480*a(n-5) +1985472*a(n-6) +1821840*a(n-7) -31021776*a(n-8) +4125984*a(n-9) +251967152*a(n-10) -46853056*a(n-11) -1173410880*a(n-12) -138650624*a(n-13) +2912101888*a(n-14) +1295316992*a(n-15) -3360870400*a(n-16) -2339016704*a(n-17) +1368141824*a(n-18) +1168457728*a(n-19) -291553280*a(n-20) -245170176*a(n-21) +45023232*a(n-22) +19922944*a(n-23) -4194304*a(n-24) for n>25

A269076 Number of 2 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

4, 11, 27, 76, 185, 489, 1204, 3059, 7539, 18748, 46001, 112977, 275620, 671387, 1629003, 3944428, 9524969, 22955577, 55208404, 132545027, 317673891, 760222300, 1816668257, 4335499425, 10333941316, 24603369515, 58513434747, 139020574348
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Examples

			Some solutions for n=4:
..1..1..0..1. .0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..0..0
..0..0..0..1. .0..0..0..1. .0..0..0..0. .0..0..1..1. .1..0..1..0
		

Crossrefs

Row 2 of A269075.

Formula

Empirical: a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) - 9*a(n-4).
Empirical g.f.: x*(4 + 3*x - 15*x^2 - 9*x^3) / (1 - x - 3*x^2)^2. - Colin Barker, Jan 18 2019

A269077 Number of 3 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

8, 32, 123, 521, 1887, 7477, 27042, 102070, 368391, 1351259, 4850557, 17489481, 62373468, 222422348, 788291635, 2789267661, 9831173339, 34583332541, 121320954422, 424799241314, 1484281289599, 5177412026719, 18028809567225
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Examples

			Some solutions for n=4:
..1..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..1
..0..0..0..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .0..0..1..0
..1..0..0..1. .1..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
		

Crossrefs

Row 3 of A269075.

Formula

Empirical: a(n) = 4*a(n-1) + 8*a(n-2) - 34*a(n-3) - 16*a(n-4) + 60*a(n-5) - 25*a(n-6).
Empirical g.f.: x*(8 - 69*x^2 + 45*x^3 + 35*x^4 - 25*x^5) / (1 - 2*x - 6*x^2 + 5*x^3)^2. - Colin Barker, Jan 18 2019

A269078 Number of 4 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

16, 89, 537, 3288, 17713, 102545, 542112, 2991561, 15699273, 84015848, 437869217, 2298582593, 11896438960, 61665786297, 317089210745, 1629210973432, 8329629544721, 42518834195697, 216316340106688, 1098583548812969
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1. .1..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..1..1
..0..1..0..1. .0..0..0..1. .1..0..0..1. .0..0..0..1. .1..0..0..0
..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..1..0..0. .1..0..1..0
..1..1..0..1. .0..0..0..1. .0..1..0..0. .0..0..0..0. .0..0..1..0
		

Crossrefs

Row 4 of A269075.

Formula

Empirical: a(n) = 4*a(n-1) + 28*a(n-2) - 78*a(n-3) - 264*a(n-4) + 296*a(n-5) + 527*a(n-6) - 252*a(n-7) - 324*a(n-8).
Empirical g.f.: x*(16 + 25*x - 267*x^2 - 104*x^3 + 691*x^4 + 275*x^5 - 576*x^6 - 324*x^7) / (1 - 2*x - 16*x^2 + 7*x^3 + 18*x^4)^2. - Colin Barker, Jan 19 2019

A269079 Number of 5Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

32, 244, 2343, 20400, 165607, 1383105, 10778640, 86308622, 661641931, 5146079168, 39031235709, 297777942033, 2239241624640, 16861326990168, 125878250277823, 939067269600080, 6967653661432115, 51619835791134129, 381021973991495280
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Row 5 of A269075.

Examples

			Some solutions for n=4
..0..0..0..0. .1..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..1..0..1. .0..0..1..0
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..1..0..0. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..0
..0..0..0..1. .0..1..1..0. .1..0..1..0. .0..1..0..1. .1..0..1..0
		

Crossrefs

Cf. A269075.

Formula

Empirical: a(n) = 8*a(n-1) +52*a(n-2) -424*a(n-3) -816*a(n-4) +6756*a(n-5) +1362*a(n-6) -38476*a(n-7) +19016*a(n-8) +82920*a(n-9) -70008*a(n-10) -50556*a(n-11) +50607*a(n-12) +9180*a(n-13) -10404*a(n-14)
Showing 1-10 of 12 results. Next