A269077 Number of 3 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
8, 32, 123, 521, 1887, 7477, 27042, 102070, 368391, 1351259, 4850557, 17489481, 62373468, 222422348, 788291635, 2789267661, 9831173339, 34583332541, 121320954422, 424799241314, 1484281289599, 5177412026719, 18028809567225
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..1 ..0..0..0..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .0..0..1..0 ..1..0..0..1. .1..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 3 of A269075.
Formula
Empirical: a(n) = 4*a(n-1) + 8*a(n-2) - 34*a(n-3) - 16*a(n-4) + 60*a(n-5) - 25*a(n-6).
Empirical g.f.: x*(8 - 69*x^2 + 45*x^3 + 35*x^4 - 25*x^5) / (1 - 2*x - 6*x^2 + 5*x^3)^2. - Colin Barker, Jan 18 2019