A269078 Number of 4 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
16, 89, 537, 3288, 17713, 102545, 542112, 2991561, 15699273, 84015848, 437869217, 2298582593, 11896438960, 61665786297, 317089210745, 1629210973432, 8329629544721, 42518834195697, 216316340106688, 1098583548812969
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1. .1..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..1..1 ..0..1..0..1. .0..0..0..1. .1..0..0..1. .0..0..0..1. .1..0..0..0 ..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..1..0..0. .1..0..1..0 ..1..1..0..1. .0..0..0..1. .0..1..0..0. .0..0..0..0. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A269075.
Formula
Empirical: a(n) = 4*a(n-1) + 28*a(n-2) - 78*a(n-3) - 264*a(n-4) + 296*a(n-5) + 527*a(n-6) - 252*a(n-7) - 324*a(n-8).
Empirical g.f.: x*(16 + 25*x - 267*x^2 - 104*x^3 + 691*x^4 + 275*x^5 - 576*x^6 - 324*x^7) / (1 - 2*x - 16*x^2 + 7*x^3 + 18*x^4)^2. - Colin Barker, Jan 19 2019