A269079 Number of 5Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
32, 244, 2343, 20400, 165607, 1383105, 10778640, 86308622, 661641931, 5146079168, 39031235709, 297777942033, 2239241624640, 16861326990168, 125878250277823, 939067269600080, 6967653661432115, 51619835791134129, 381021973991495280
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0. .1..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..1 ..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..1..0..1. .0..0..1..0 ..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0 ..0..1..0..0. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..0 ..0..0..0..1. .0..1..1..0. .1..0..1..0. .0..1..0..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269075.
Formula
Empirical: a(n) = 8*a(n-1) +52*a(n-2) -424*a(n-3) -816*a(n-4) +6756*a(n-5) +1362*a(n-6) -38476*a(n-7) +19016*a(n-8) +82920*a(n-9) -70008*a(n-10) -50556*a(n-11) +50607*a(n-12) +9180*a(n-13) -10404*a(n-14)
Comments