A269083 Number of n X 2 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
4, 11, 30, 76, 191, 467, 1127, 2686, 6339, 14840, 34504, 79759, 183445, 420077, 958248, 2178427, 4937234, 11159252, 25160111, 56599879, 127066227, 284728994, 636922003, 1422499564, 3172350160, 7065116255, 15714769641, 34912773337
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0. .0..0. .0..0. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0 ..1..0. .1..1. .1..1. .0..0. .1..0. .1..0. .0..1. .0..1. .0..1. .0..1 ..0..1. .0..0. .0..0. .1..0. .0..1. .1..0. .0..0. .0..0. .0..0. .0..0 ..0..0. .0..1. .0..0. .0..0. .0..0. .0..0. .0..0. .1..0. .0..1. .0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A269089.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6).
Empirical g.f.: x*(4 + 3*x - 4*x^2 - 9*x^3 - 5*x^4 - x^5) / (1 - x - 2*x^2 - x^3)^2. - Colin Barker, Jan 19 2019