cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269085 Number of nX4 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.

Original entry on oeis.org

13, 76, 428, 2238, 11314, 55620, 268289, 1274435, 5982734, 27813229, 128268964, 587560638, 2675945006, 12126527636, 54715085702, 245932380152, 1101667424213, 4920048498594, 21913218006880, 97358802936939, 431593734805059
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Column 4 of A269089.

Examples

			Some solutions for n=4
..1..0..0..1. .1..1..0..0. .0..0..0..0. .0..0..1..0. .1..0..0..0
..1..0..0..0. .0..0..0..1. .1..0..1..0. .0..0..0..1. .0..0..1..0
..0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1
..0..0..0..0. .0..1..0..1. .0..1..0..0. .1..0..0..0. .0..0..0..0
		

Crossrefs

Cf. A269089.

Formula

Empirical: a(n) = 2*a(n-1) +19*a(n-2) +10*a(n-3) -122*a(n-4) -320*a(n-5) -295*a(n-6) +8*a(n-7) +176*a(n-8) +20*a(n-9) -98*a(n-10) -6*a(n-11) +43*a(n-12) -6*a(n-13) -11*a(n-14) +6*a(n-15) -a(n-16)