A269085 Number of nX4 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
13, 76, 428, 2238, 11314, 55620, 268289, 1274435, 5982734, 27813229, 128268964, 587560638, 2675945006, 12126527636, 54715085702, 245932380152, 1101667424213, 4920048498594, 21913218006880, 97358802936939, 431593734805059
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..1. .1..1..0..0. .0..0..0..0. .0..0..1..0. .1..0..0..0 ..1..0..0..0. .0..0..0..1. .1..0..1..0. .0..0..0..1. .0..0..1..0 ..0..1..0..1. .0..0..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1 ..0..0..0..0. .0..1..0..1. .0..1..0..0. .1..0..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269089.
Formula
Empirical: a(n) = 2*a(n-1) +19*a(n-2) +10*a(n-3) -122*a(n-4) -320*a(n-5) -295*a(n-6) +8*a(n-7) +176*a(n-8) +20*a(n-9) -98*a(n-10) -6*a(n-11) +43*a(n-12) -6*a(n-13) -11*a(n-14) +6*a(n-15) -a(n-16)
Comments