A269086 Number of nX5 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
23, 191, 1531, 11314, 80422, 555789, 3761534, 25063389, 164926651, 1074440360, 6941695514, 44537043804, 284052377508, 1802408061740, 11386034886784, 71645923776799, 449267054051740, 2808501899850347, 17508131088788801
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0..1. .1..0..0..1..1. .0..0..0..1..0. .1..0..0..0..0 ..0..0..0..0..1. .0..0..0..0..0. .0..0..0..1..0. .0..1..0..1..0 ..1..0..1..0..0. .0..0..0..0..0. .1..0..0..0..0. .0..0..1..0..0 ..0..0..0..1..0. .1..0..1..0..1. .0..0..1..0..0. .0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269089.
Formula
Empirical: a(n) = 2*a(n-1) +41*a(n-2) +54*a(n-3) -509*a(n-4) -2182*a(n-5) -2830*a(n-6) +1766*a(n-7) +7914*a(n-8) +2584*a(n-9) -10583*a(n-10) -6092*a(n-11) +11506*a(n-12) +5348*a(n-13) -11688*a(n-14) -620*a(n-15) +9251*a(n-16) -4462*a(n-17) -3137*a(n-18) +4774*a(n-19) -2365*a(n-20) +338*a(n-21) +198*a(n-22) -106*a(n-23) +12*a(n-24) +4*a(n-25) -a(n-26)
Comments