cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269087 Number of nX6 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.

This page as a plain text file.
%I A269087 #4 Feb 19 2016 09:22:31
%S A269087 41,467,5387,55620,555789,5372270,50865307,473602013,4353444165,
%T A269087 39602482120,357186481377,3198535920085,28468239800885,
%U A269087 252053488597419,2221493915335639,19501164969933904,170584538930223039
%N A269087 Number of nX6 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
%C A269087 Column 6 of A269089.
%H A269087 R. H. Hardin, <a href="/A269087/b269087.txt">Table of n, a(n) for n = 1..210</a>
%F A269087 Empirical: a(n) = 2*a(n-1) +83*a(n-2) +210*a(n-3) -1918*a(n-4) -13444*a(n-5) -27431*a(n-6) +22868*a(n-7) +172414*a(n-8) +91292*a(n-9) -572846*a(n-10) -576908*a(n-11) +1569339*a(n-12) +1662464*a(n-13) -4129647*a(n-14) -2739590*a(n-15) +10005684*a(n-16) +128072*a(n-17) -18820309*a(n-18) +14239344*a(n-19) +18275195*a(n-20) -39512592*a(n-21) +16595129*a(n-22) +32600294*a(n-23) -63035320*a(n-24) +55225574*a(n-25) -27556538*a(n-26) +5959238*a(n-27) +1367780*a(n-28) -935764*a(n-29) -205936*a(n-30) +253428*a(n-31) -6946*a(n-32) -44268*a(n-33) +5192*a(n-34) +6896*a(n-35) -1085*a(n-36) -848*a(n-37) +74*a(n-38) +94*a(n-39) +3*a(n-40) -6*a(n-41) -a(n-42)
%e A269087 Some solutions for n=4
%e A269087 ..0..0..0..0..1..0. .0..0..1..0..0..1. .1..0..0..0..1..0. .0..1..0..0..0..0
%e A269087 ..1..0..0..0..0..0. .0..0..0..1..0..0. .0..0..0..0..0..1. .0..0..0..0..0..0
%e A269087 ..0..0..1..0..0..0. .1..0..0..0..0..0. .1..0..1..0..0..0. .0..1..0..0..0..1
%e A269087 ..0..0..0..1..0..1. .0..0..1..0..0..0. .0..0..1..0..0..0. .0..0..1..0..0..0
%Y A269087 Cf. A269089.
%K A269087 nonn
%O A269087 1,1
%A A269087 _R. H. Hardin_, Feb 19 2016