A269089 T(n,k)=Number of nXk binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
2, 4, 4, 7, 11, 7, 13, 30, 30, 13, 23, 76, 114, 76, 23, 41, 191, 428, 428, 191, 41, 72, 467, 1531, 2238, 1531, 467, 72, 126, 1127, 5387, 11314, 11314, 5387, 1127, 126, 219, 2686, 18590, 55620, 80422, 55620, 18590, 2686, 219, 379, 6339, 63347, 268289, 555789
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1. .1..0..0..1. .0..0..1..0. .0..1..0..0. .0..0..0..0 ..1..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0. .0..0..0..1 ..0..0..0..1. .0..0..0..1. .0..1..0..0. .0..1..0..0. .1..1..0..0 ..1..0..0..1. .1..0..0..0. .1..0..0..0. .0..1..0..0. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Crossrefs
Column 1 is A208354(n+1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6)
k=3: [order 10]
k=4: [order 16]
k=5: [order 26]
k=6: [order 42]
k=7: [order 68]
Comments