A269091 Number of n X 2 0..3 arrays with some element plus some horizontally or vertically adjacent neighbor totalling three exactly once.
4, 96, 1152, 11424, 103488, 889056, 7375872, 59698464, 474360768, 3715826016, 28777886592, 220814937504, 1681292682048, 12718165610976, 95670977133312, 716203564928544, 5338972029467328, 39651633731043936, 293513242790716032
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..0. .2..2. .3..3. .3..3. .1..3. .3..3. .2..2. .3..2. .3..3. .1..3 ..1..1. .2..2. .2..3. .2..2. .3..1. .0..1. .3..2. .2..3. .3..3. .0..1 ..1..1. .1..0. .3..1. .1..3. .2..2. .1..0. .1..0. .0..1. .1..0. .0..2 ..3..3. .3..2. .2..2. .3..3. .3..3. .0..1. .1..2. .0..2. .3..2. .2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269097.
Formula
Empirical: a(n) = 14*a(n-1) -49*a(n-2) for n>3.
Conjectures from Colin Barker, Mar 21 2018: (Start)
G.f.: 4*x*(1 + 10*x + x^2) / (1 - 7*x)^2.
a(n) = 96*7^(n-3)*(5*n-3) for n>1.
(End)
Comments