This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269099 #13 Mar 31 2016 13:22:24 %S A269099 5,10,13,16,20,25,31,32,33,37,40,41,43,44,47,51,54,63,64,70,71,72,73, %T A269099 74,75,76,78,79,80,84,85,86,87,93,98,100,101,102,103,104,105,106,107, %U A269099 108,109,110,111,112,113,115,126,129,130,132,133,134,135,136,137 %N A269099 Numbers n with the property that if there is a number j with prime(n+i) + prime(n-i) = j for some i, then there are least two choices for i that give this value of j. %H A269099 Michel Lagneau, <a href="/A269099/b269099.txt">Table of n, a(n) for n = 1..5000</a> %e A269099 5 is a member because we have: %e A269099 prime(5 + 3) + prime(5 - 3) = 19 + 3 = 22; %e A269099 prime(5 + 2) + prime(5 - 2) = 17 + 5 = 22. %e A269099 10 is a member because we have: %e A269099 prime(10 + 2) + prime(10 - 2) = 19 + 37 = 56; %e A269099 prime(10 + 3) + prime(10 - 3) = 17 + 41 = 58; %e A269099 prime(10 + 4) + prime(10 - 4) = 13 + 43 = 56; %e A269099 prime(10 + 5) + prime(10 - 5) = 11 + 47 = 58; %e A269099 prime(10 + 7) + prime(10 - 7) = 5 + 59 = 64; %e A269099 prime(10 + 8) + prime(10 - 8) = 3 + 61 = 64; %e A269099 and all the sums 56, 58 and 64 appear twice. %p A269099 for n from 1 to 200 do: %p A269099 lst:={}:W:=array(1..n-1):cr:=0: %p A269099 for m from n-1 by -1 to 1 do: %p A269099 q:=ithprime(n-m)+ithprime(n+m):lst:=lst union {q}:W[m]:=q:cr:=cr+1: %p A269099 od:c:=0: %p A269099 for k from 1 to cr do: %p A269099 if W[k]=2*ithprime(n) then c:=c+1: %p A269099 else fi: %p A269099 od: %p A269099 if c>1 then %p A269099 printf(`%d, `,n): %p A269099 else fi: %p A269099 od : %Y A269099 Cf. A269043. %K A269099 nonn %O A269099 1,1 %A A269099 _Michel Lagneau_, Feb 19 2016