cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269109 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or vertically adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 180, 60, 216, 1740, 1740, 216, 756, 15540, 40908, 15540, 756, 2592, 132300, 872460, 872460, 132300, 2592, 8748, 1090740, 17593092, 43964700, 17593092, 1090740, 8748, 29160, 8787660, 342055548, 2085484068, 2085484068
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2016

Keywords

Comments

Table starts
......4.........16.............60................216....................756
.....16........180...........1740..............15540.................132300
.....60.......1740..........40908.............872460...............17593092
....216......15540.........872460...........43964700.............2085484068
....756.....132300.......17593092.........2085484068...........232068730044
...2592....1090740......342055548........95166487524.........24808345933548
...8748....8787660.....6482020140......4227147007836.......2579398703502996
..29160...69580980...120520189980....184069947098892.....262780733311913580
..96228..543538380..2208175854948...7894012975085748...26357371124964908460
.314928.4200069300.39988864047276.334480929126425748.2611360040338484328156

Examples

			Some solutions for n=3 k=4
..0..0..1..2. .0..2..2..0. .0..1..1..1. .0..2..3..1. .2..0..1..0
..0..2..3..3. .0..2..0..1. .0..0..3..1. .0..0..1..3. .0..0..1..1
..1..3..1..3. .1..0..0..2. .0..2..2..3. .0..0..0..2. .2..2..2..3
		

Crossrefs

Column 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 14] for n>15
k=6: [order 26] for n>27
k=7: [order 64] for n>65