A269134 Number of combinatory separations of normal multisets of weight n.
1, 4, 14, 57, 223, 948, 3940, 16994, 72964, 317959, 1385592, 6085763, 26738139, 117939291, 520553999, 2301781692, 10181786176, 45074744448, 199558036891, 883670342156, 3912320450786
Offset: 1
Examples
For a(3) the 14 distinct combinatory separations grouped according to head are: 111<={111}, 111<={1,11}, 111<={1,1,1}; 112<={112}, 112<={1,11}, 112<={1,12}, 112<={1,1,1}; 122<={122}, 122<={1,11}, 122<={1,12}, 122<={1,1,1}; 123<={123}, 123<={1,12}, 123<={1,1,1}. Note that in this enumeration the two multiset partitions {{1},{2,3}}:123<={1,12} and {{1,2},{3}}:123<={1,12} do not represent distinct multi-arrows and consequently are counted only once, whereas the two multiset partitions {{1},{1,2}}:112<={1,12} and {{1,2},{2}}:122<={1,12} are counted separately even though they have the same multiset of block-types.
Links
- Martin Fuller, C++ program
- Gus Wiseman, Comcategories and Multiorders (pdf version)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,allnorm[n]}]],{n,7}] (* Gus Wiseman, Aug 29 2018 *)
Extensions
a(9) from Gus Wiseman, Aug 29 2018
a(10) from Robert Price, Sep 14 2018
a(11)-a(21) from Martin Fuller, Mar 22 2025
Comments