cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269144 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - 2*x^k)).

This page as a plain text file.
%I A269144 #8 Feb 20 2016 09:06:23
%S A269144 1,3,10,29,77,195,475,1115,2546,5706,12528,27106,57893,122299,255995,
%T A269144 531816,1097377,2252151,4600835,9362334,18990645,38418370,77548880,
%U A269144 156251955,314363615,631703790,1268148900,2543812090,5099469848,10217529291,20464112218
%N A269144 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - 2*x^k)).
%C A269144 Convolution of A022629 and A070933.
%H A269144 Vaclav Kotesovec, <a href="/A269144/b269144.txt">Table of n, a(n) for n = 0..3290</a>
%F A269144 a(n) ~ c * 2^n, where c = Product_{k>=1} (2^k + k)/(2^k - 1) = 19.14883592186082265751161402244824703642181055238186925199088...
%t A269144 nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A269144 Cf. A022629, A070933, A267004, A269153.
%K A269144 nonn
%O A269144 0,2
%A A269144 _Vaclav Kotesovec_, Feb 20 2016