A269146 Number of n X 2 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three exactly once.
4, 80, 768, 6224, 46464, 330192, 2270592, 15251152, 100647168, 655139152, 4217820672, 26911075152, 170416738944, 1072338720464, 6710943646848, 41800542176720, 259288295447040, 1602497927690832, 9871915467776256
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3..2. .0..0. .2..0. .3..3. .1..0. .1..0. .1..3. .3..1. .0..2. .1..1 ..2..0. .2..3. .0..2. .3..3. .1..1. .0..2. .0..1. .1..0. .0..0. .3..3 ..1..0. .2..2. .0..3. .1..0. .1..3. .0..0. .0..0. .0..1. .2..3. .3..2 ..0..1. .3..3. .2..3. .0..0. .1..0. .1..3. .2..0. .0..2. .3..3. .0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A269152.
Formula
Empirical: a(n) = 12*a(n-1) - 38*a(n-2) + 12*a(n-3) - a(n-4) for n>5.
Empirical g.f.: 4*x*(1 - x)*(1 + 9*x - x^2 - x^3) / (1 - 6*x + x^2)^2. - Colin Barker, Jan 19 2019