cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269154 Expansion of Product_{k>=1} (1 + k*x^k)/(1 + 2*x^k).

This page as a plain text file.
%I A269154 #9 Feb 20 2016 09:05:35
%S A269154 1,-1,2,-3,9,-13,31,-53,118,-210,452,-866,1793,-3493,7119,-13992,
%T A269154 28257,-56253,113035,-225318,451745,-901870,1805976,-3609701,7222075,
%U A269154 -14439594,28887060,-57763494,115540784,-231066845,462154358,-924282660,1848598423,-3697142099
%N A269154 Expansion of Product_{k>=1} (1 + k*x^k)/(1 + 2*x^k).
%H A269154 Vaclav Kotesovec, <a href="/A269154/b269154.txt">Table of n, a(n) for n = 0..3300</a>
%F A269154 a(n) ~ c * (-2)^n, where c = Product_{k>=1} ((-2)^k + k)/((-2)^k - 1) = 0.4304067090888734207149852218007129877370867778815471457548443780472...
%t A269154 nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1+2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A269154 Cf. A022629, A269144, A269153, A269155.
%K A269154 sign
%O A269154 0,3
%A A269154 _Vaclav Kotesovec_, Feb 20 2016