This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269163 #12 Feb 16 2025 08:33:30 %S A269163 0,7,13,14,25,26,27,28,49,50,51,52,53,54,56,63,97,98,99,100,101,102, %T A269163 104,105,106,107,108,111,112,119,125,126,193,194,195,196,197,198,200, %U A269163 201,202,203,204,207,208,209,210,211,212,213,214,215,216,221,222,223,224,231,237,238,249,250,251,252,385,386,387,388 %N A269163 Numbers which have a finite predecessor in Wolfram's Rule 30 cellular automaton; range of A269160 sorted into ascending order. %C A269163 Numbers which have a finite predecessor in Wolfram's Rule 30 cellular automaton. The configuration of white and black cells is encoded in the binary representation (A007088) of each number. %C A269163 The indexing starts from zero, because a(0) = 0 is a special case in this sequence. (Zero is the only number which is its own predecessor). %H A269163 Antti Karttunen, <a href="/A269163/b269163.txt">Table of n, a(n) for n = 0..8191</a> %H A269163 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule30.html">Rule 30</a> %H A269163 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A269163 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %t A269163 terms = 100; Clear[f]; f[max_] := f[max] = Sort[Table[BitXor[n, BitOr[2n, 4n]], {n, 0, max}]][[1 ;; terms]]; f[terms]; f[max = 2 terms]; While[ Print[max]; f[max] != f[max/2], max = 2 max]; A269163 = f[max] (* _Jean-François Alcover_, Feb 23 2016 *) %o A269163 (Scheme, with _Antti Karttunen_'s IntSeq-library) %o A269163 (define A269163 (MATCHING-POS 0 0 (lambda (n) (or (zero? n) (not (zero? (A269162 n))))))) %Y A269163 Complement: A269164. %Y A269163 Cf. A007088, A269162. %K A269163 nonn %O A269163 0,2 %A A269163 _Antti Karttunen_, Feb 20 2016