This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269173 #25 Feb 16 2025 08:33:30 %S A269173 0,7,14,15,28,31,30,27,56,63,62,63,60,63,54,51,112,119,126,127,124, %T A269173 127,126,123,120,127,126,127,108,111,102,99,224,231,238,239,252,255, %U A269173 254,251,248,255,254,255,252,255,246,243,240,247,254,255,252,255,254,251,216,223,222,223,204,207,198,195,448,455,462 %N A269173 Formula for Wolfram's Rule 126 cellular automaton: a(n) = (n XOR 2n) OR (n XOR 4n). %H A269173 Antti Karttunen, <a href="/A269173/b269173.txt">Table of n, a(n) for n = 0..8191</a> %H A269173 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule126.html">Rule 126</a> %H A269173 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A269173 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A269173 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A269173 a(n) = A048724(n) OR A048725(n) = (n XOR 2n) OR (n XOR 4n), where OR is a bitwise-or (A003986) and XOR is A003987. %F A269173 Other identities. For all n >= 0: %F A269173 a(2*n) = 2*a(n). %F A269173 a(n) = A057889(a(A057889(n))). [Rule 126 is amphichiral (symmetric).] %e A269173 a(4) = (4 XOR 2*4) OR (4 XOR 4*4) = 12 OR 20 = 28. - _Indranil Ghosh_, Apr 02 2017 %t A269173 Table[BitOr[BitXor[n, 2n], BitXor[n, 4n]], {n, 0, 100}] (* _Indranil Ghosh_, Apr 02 2017 *) %o A269173 (Scheme) (define (A269173 n) (A003986bi (A048724 n) (A048725 n))) %o A269173 (PARI) for(n=0, 100, print1(bitor(bitxor(n, 2*n), bitxor(n, 4*n)),", ")) \\ _Indranil Ghosh_, Apr 02 2017 %o A269173 (Python) print([(n^(2*n))|(n^(4*n)) for n in range(101)]) # _Indranil Ghosh_, Apr 02 2017 %o A269173 (C) %o A269173 #include <stdio.h> %o A269173 int main() %o A269173 { %o A269173 int n; %o A269173 for(n=0; n<=100; n++){ %o A269173 printf("%d, ",(n^(2*n))|(n^(4*n))); %o A269173 } %o A269173 return 0; %o A269173 } /* _Indranil Ghosh_, Apr 02 2017 */ %Y A269173 Cf. A003986, A003987, A048724, A048725, A057889. %Y A269173 Cf. A267365 (iterates starting from 1). %Y A269173 Cf. A269174. %K A269173 nonn %O A269173 0,2 %A A269173 _Antti Karttunen_, Feb 22 2016