cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A269196 Number of n X 3 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

60, 1284, 25572, 471492, 8314020, 142233732, 2380537188, 39186271044, 636703584804, 10237337586180, 163189207436004, 2582623154662596, 40622651914004388, 635603382950474628, 9899530341266770020
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Examples

			Some solutions for n=3:
..3..1..1. .2..3..2. .3..1..0. .1..0..1. .2..0..3. .3..3..3. .3..3..3
..3..1..0. .2..2..0. .0..0..1. .1..3..2. .2..3..2. .3..1..1. .3..3..2
..0..2..3. .2..2..2. .0..1..0. .0..0..2. .3..2..2. .1..0..1. .3..2..3
		

Crossrefs

Column 3 of A269201.

Formula

Empirical: a(n) = 30*a(n-1) -237*a(n-2) +180*a(n-3) -36*a(n-4) for n>5.
Empirical g.f.: 12*x*(1 - 6*x)*(5 - 13*x + 28*x^2 - 12*x^3) / (1 - 15*x + 6*x^2)^2. - Colin Barker, Jan 20 2019

A269197 Number of n X 4 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

216, 9612, 400428, 15289548, 555862380, 19558138380, 672230393004, 22702294138188, 756261535626732, 24917784636315276, 813662963240248620, 26370904678702613964, 849277413026034547308, 27202597468298860880652
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Examples

			Some solutions for n=2:
..1..0..0..1. .1..3..1..2. .3..1..0..1. .0..2..2..2. .1..0..1..3
..0..1..1..3. .2..3..2..3. .0..1..3..2. .3..2..3..0. .1..1..1..0
		

Crossrefs

Column 4 of A269201.

Formula

Empirical: a(n) = 62*a(n-1) - 1031*a(n-2) + 2180*a(n-3) - 1535*a(n-4) + 350*a(n-5) - 25*a(n-6) for n>7.
Empirical g.f.: 12*x*(18 - 315*x + 2265*x^2 - 8158*x^3 + 10756*x^4 - 4951*x^5 + 897*x^6) / ((1 - x)^2*(1 - 30*x + 5*x^2)^2). - Colin Barker, Jan 20 2019

A269198 Number of n X 5 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

756, 68052, 5877228, 463790340, 34838403756, 2532677348772, 179867149105740, 12551707872624132, 864008559706781292, 58827234014669683044, 3969574872302454754188, 265864675607662372035012
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Column 5 of A269201.

Examples

			Some solutions for n=2
..1..0..1..1..1. .0..1..0..2..2. .0..1..1..1..2. .2..0..1..1..0
..0..0..1..0..0. .3..1..1..0..0. .0..0..0..0..1. .2..3..3..1..0
		

Crossrefs

Cf. A269201.

Formula

Empirical: a(n) = 156*a(n-1) -8170*a(n-2) +166732*a(n-3) -1381249*a(n-4) +2520764*a(n-5) +23584856*a(n-6) -130579860*a(n-7) +143100280*a(n-8) +633365472*a(n-9) -2425054036*a(n-10) +3486590032*a(n-11) -2082954096*a(n-12) -207585696*a(n-13) +891171072*a(n-14) -335167488*a(n-15) -34112320*a(n-16) +43766784*a(n-17) -8385024*a(n-18) +497664*a(n-19) -9216*a(n-20) for n>21.

A269199 Number of nX6 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

2592, 472044, 84310620, 13753913556, 2135938293684, 320994710282892, 47121391706947500, 6796525936086462132, 966936595386067680804, 136062368474581143710892, 18974537404982889834704892
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Column 6 of A269201.

Examples

			Some solutions for n=2
..0..0..0..2..0..1. .0..0..1..3..1..3. .0..3..2..0..0..2. .0..2..0..2..2..2
..0..0..2..0..2..2. .2..0..2..1..1..3. .2..0..2..0..0..0. .0..1..0..0..3..3
		

Crossrefs

Cf. A269201.

Formula

Empirical recurrence of order 42 (see link above)

A269200 Number of n X 7 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

8748, 3212820, 1184381844, 399104835612, 128136007344516, 39825831571425924, 12093315071771856492, 3608384928930423012804, 1062048602869077147571956, 309185374985245150329134076, 89206481105125372533736647588
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Column 7 of A269201.

Examples

			Some solutions for n=1
..1..3..0..0..0..1..1. .2..1..3..1..3..2..3. .1..2..0..0..0..0..2
		

Crossrefs

Cf. A269201.

A269202 Number of 2 X n 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

16, 180, 1284, 9612, 68052, 472044, 3212820, 21562476, 143085588, 940780908, 6138286356, 39791327340, 256517615124, 1645723601772, 10514049071892, 66922539204204, 424564703856660, 2685565034934636, 16942451080369428
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Examples

			Some solutions for n=4:
..2..3..2..0. .1..0..0..0. .3..0..2..3. .0..3..3..1. .0..2..3..2
..2..3..1..1. .0..0..2..1. .2..2..2..0. .1..1..3..1. .3..1..0..1
		

Crossrefs

Row 2 of A269201.

Formula

Empirical: a(n) = 10*a(n-1) - 13*a(n-2) - 60*a(n-3) - 36*a(n-4).
Conjectures from Colin Barker, Jan 20 2019: (Start)
G.f.: 4*x*(4 + 5*x - 77*x^2 + 18*x^3) / ((1 + x)^2*(1 - 6*x)^2).
a(n) = (6*(-678*(-1)^n+335*6^n) + 56*(144*(-1)^n+25*6^n)*n) / 1029.
(End)

A269203 Number of 3 X n 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

64, 1740, 25572, 400428, 5877228, 84310620, 1184381844, 16385570076, 223935582828, 3030348558252, 40673437553748, 542180347359564, 7185077761974828, 94737850175764476, 1243661129422894356, 16262904060512571516, 211935250795961093868, 2753454797480878594380
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Examples

			Some solutions for n=3:
..1..3..3. .1..3..1. .1..2..0. .0..0..0. .2..0..3. .1..1..1. .3..3..3
..3..1..1. .2..3..2. .3..1..0. .0..1..1. .1..3..1. .3..1..3. .3..3..3
..1..1..3. .2..3..1. .3..2..0. .3..3..3. .2..0..1. .1..2..0. .2..3..1
		

Crossrefs

Row 3 of A269201.

Formula

Empirical: a(n) = 24*a(n-1) -130*a(n-2) -248*a(n-3) +935*a(n-4) +272*a(n-5) -1768*a(n-6) +960*a(n-7) -144*a(n-8).

A269204 Number of 4Xn 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

256, 15540, 471492, 15289548, 463790340, 13753913556, 399104835612, 11402099212308, 321701652077076, 8985658235129964, 248904744378939924, 6846738391062856596, 187219797100389992412, 5093241917191742737620
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Row 4 of A269201.

Examples

			Some solutions for n=2
..3..1. .0..2. .1..1. .3..3. .3..1. .2..3. .3..2. .2..2. .0..3. .3..2
..3..2. .0..1. .1..3. .2..3. .1..1. .1..0. .3..1. .3..2. .2..0. .2..3
..3..3. .0..0. .3..1. .3..3. .1..1. .0..2. .1..3. .2..0. .1..3. .2..3
..1..2. .1..1. .3..3. .0..1. .2..3. .2..0. .1..1. .1..3. .2..0. .2..2
		

Crossrefs

Cf. A269201.

Formula

Empirical: a(n) = 48*a(n-1) -424*a(n-2) -5664*a(n-3) +40624*a(n-4) +218356*a(n-5) -1300662*a(n-6) -2980700*a(n-7) +17916384*a(n-8) +2629424*a(n-9) -96328452*a(n-10) +132185980*a(n-11) -10936481*a(n-12) -91456900*a(n-13) +51588388*a(n-14) +9975760*a(n-15) -14279120*a(n-16) +2348160*a(n-17) +465152*a(n-18) -79872*a(n-19) -9216*a(n-20)

A269205 Number of 5 X n 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

1024, 132300, 8314020, 555862380, 34838403756, 2135938293684, 128136007344516, 7568312936979972, 441444334269067260, 25489789190515708236, 1459585457554075237908, 82994548126187965994148
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Row 5 of A269201.

Examples

			Some solutions for n=2
..1..3. .1..0. .1..3. .1..0. .2..2. .1..3. .1..0. .0..2. .1..0. .2..2
..1..3. .3..3. .3..1. .0..2. .3..2. .1..1. .2..0. .0..2. .1..0. .0..0
..2..0. .3..3. .0..3. .2..0. .2..3. .0..1. .2..0. .2..1. .1..3. .1..3
..1..0. .3..2. .1..0. .2..3. .2..3. .0..0. .0..3. .3..3. .1..3. .1..3
..0..2. .0..2. .0..0. .2..0. .3..1. .2..0. .1..0. .3..1. .3..1. .2..0
		

Crossrefs

Cf. A269201.

Formula

Empirical recurrence of order 52 (see link above).

A269206 Number of 6Xn 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4096, 1090740, 142233732, 19558138380, 2532677348772, 320994710282892, 39825831571425924, 4865841496644992100, 587133256785089633172, 70137053123425124078748, 8308848756491598850682388
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Row 6 of A269201.

Examples

			Some solutions for n=2
..0..1. .0..0. .0..1. .0..0. .0..0. .0..1. .0..1. .0..0. .0..1. .0..0
..0..1. .0..0. .0..2. .2..0. .0..2. .0..0. .0..1. .0..1. .0..0. .0..0
..1..0. .0..1. .3..1. .0..0. .3..2. .2..0. .3..1. .3..1. .2..0. .2..0
..2..0. .0..2. .1..2. .1..0. .2..0. .0..0. .3..2. .3..3. .3..2. .2..3
..1..3. .0..2. .2..3. .2..1. .2..3. .2..1. .2..0. .3..3. .2..2. .3..2
..0..0. .2..3. .2..3. .3..2. .3..2. .1..0. .0..0. .2..3. .0..2. .0..3
		

Crossrefs

Cf. A269201.
Showing 1-10 of 12 results. Next