A269204 Number of 4Xn 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three no more than once.
256, 15540, 471492, 15289548, 463790340, 13753913556, 399104835612, 11402099212308, 321701652077076, 8985658235129964, 248904744378939924, 6846738391062856596, 187219797100389992412, 5093241917191742737620
Offset: 1
Keywords
Examples
Some solutions for n=2 ..3..1. .0..2. .1..1. .3..3. .3..1. .2..3. .3..2. .2..2. .0..3. .3..2 ..3..2. .0..1. .1..3. .2..3. .1..1. .1..0. .3..1. .3..2. .2..0. .2..3 ..3..3. .0..0. .3..1. .3..3. .1..1. .0..2. .1..3. .2..0. .1..3. .2..3 ..1..2. .1..1. .3..3. .0..1. .2..3. .2..0. .1..1. .1..3. .2..0. .2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269201.
Formula
Empirical: a(n) = 48*a(n-1) -424*a(n-2) -5664*a(n-3) +40624*a(n-4) +218356*a(n-5) -1300662*a(n-6) -2980700*a(n-7) +17916384*a(n-8) +2629424*a(n-9) -96328452*a(n-10) +132185980*a(n-11) -10936481*a(n-12) -91456900*a(n-13) +51588388*a(n-14) +9975760*a(n-15) -14279120*a(n-16) +2348160*a(n-17) +465152*a(n-18) -79872*a(n-19) -9216*a(n-20)
Comments