A269210 Number of n X 4 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.
108, 6528, 308544, 12548544, 474091776, 17118725376, 599456856000, 20531285093184, 691495131961728, 22985647571590272, 756022683316823616, 24651356966323488960, 797979183054277922304, 25672248307708057755648
Offset: 1
Keywords
Examples
Some solutions for n=2: ..3..1..0..0. .1..0..3..2. .0..3..2..2. .0..2..3..2. .2..2..2..3 ..0..0..0..0. .2..3..2..3. .3..2..2..0. .0..2..2..1. .0..0..3..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269214.
Formula
Empirical: a(n) = 62*a(n-1) - 1031*a(n-2) + 2180*a(n-3) - 1535*a(n-4) + 350*a(n-5) - 25*a(n-6) for n>7.
Empirical g.f.: 12*x*(9 - 14*x + 1263*x^2 - 7188*x^3 + 10471*x^4 - 4926*x^5 + 897*x^6) / ((1 - x)^2*(1 - 30*x + 5*x^2)^2). - Colin Barker, Jan 20 2019