cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269214 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 0, 24, 96, 0, 108, 768, 1152, 0, 432, 6528, 18048, 11424, 0, 1620, 49536, 308544, 361728, 103488, 0, 5832, 360960, 4744704, 12548544, 6712704, 889056, 0, 20412, 2546304, 70371048, 394072704, 474091776, 118872576, 7375872, 0, 69984, 17563392
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2016

Keywords

Comments

Table starts
.0........4..........24............108...............432................1620
.0.......96.........768...........6528.............49536..............360960
.0.....1152.......18048.........308544...........4744704............70371048
.0....11424......361728.......12548544.........394072704.........11985002256
.0...103488.....6712704......474091776.......30541426560.......1910809190712
.0...889056...118872576....17118725376.....2267772823680.....292321215814512
.0..7375872..2039727744...599456856000...163535201141376...43468685827935816
.0.59698464.34214296320.20531285093184.11544796423498368.6331185189881558208

Examples

			Some solutions for n=3 k=4
..2..2..3..2. .2..2..2..3. .0..1..0..2. .0..0..0..2. .2..2..0..0
..0..2..0..2. .0..0..1..0. .1..1..3..0. .0..1..2..0. .0..0..2..3
..2..1..0..1. .0..1..0..1. .0..1..0..2. .0..0..0..0. .0..0..1..3
		

Crossrefs

Column 2 is A269091.
Row 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 14*a(n-1) -49*a(n-2) for n>3
k=3: a(n) = 30*a(n-1) -237*a(n-2) +180*a(n-3) -36*a(n-4) for n>5
k=4: [order 6] for n>7
k=5: [order 20] for n>21
k=6: [order 42] for n>43
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 10*a(n-1) -13*a(n-2) -60*a(n-3) -36*a(n-4)
n=3: [order 8]
n=4: [order 20]
n=5: [order 52] for n>53