A269215 Number of 2 X n 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.
0, 96, 768, 6528, 49536, 360960, 2546304, 17563392, 119091072, 796813824, 5274483840, 34608512256, 225420724608, 1459142258688, 9394561013376, 60205610853120, 384263133750144, 2443755614295552, 15491594556534912
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3..1..1..0. .3..2..2..2. .0..1..1..1. .2..0..2..0. .3..3..3..3 ..3..2..0..1. .2..0..2..0. .3..3..3..1. .1..2..2..2. .0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269214.
Formula
Empirical: a(n) = 10*a(n-1) - 13*a(n-2) - 60*a(n-3) - 36*a(n-4).
From Colin Barker, Mar 21 2018: (Start)
G.f.: 96*x^2*(1 - x)^2 / ((1 + x)^2*(1 - 6*x)^2).
a(n) = 8*(175*6^n*n + 1008*n - 55*6^n - 288) / 1029 for n even.
a(n) = 8*(175*6^n*n - 1008*n - 55*6^n + 288) / 1029 for n odd.
(End)
Comments