A269217 Number of 4Xn 0..3 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling three exactly once.
0, 11424, 361728, 12548544, 394072704, 11985002256, 354189986208, 10261769266944, 292749231337728, 8250573640526208, 230241360762467712, 6372885696329678304, 175188945893347242144, 4787785430572600575216
Offset: 1
Keywords
Examples
Some solutions for n=2 ..3..1. .3..2. .2..2. .2..0. .1..3. .3..1. .3..1. .1..3. .3..3. .2..0 ..0..1. .2..1. .3..2. .1..3. .3..1. .1..3. .0..2. .2..3. .1..1. .0..0 ..1..3. .0..0. .0..0. .2..3. .0..3. .2..3. .1..1. .1..1. .3..1. .1..1 ..3..1. .1..1. .0..2. .0..0. .3..2. .3..1. .1..0. .1..1. .2..2. .0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269214.
Formula
Empirical: a(n) = 48*a(n-1) -424*a(n-2) -5664*a(n-3) +40624*a(n-4) +218356*a(n-5) -1300662*a(n-6) -2980700*a(n-7) +17916384*a(n-8) +2629424*a(n-9) -96328452*a(n-10) +132185980*a(n-11) -10936481*a(n-12) -91456900*a(n-13) +51588388*a(n-14) +9975760*a(n-15) -14279120*a(n-16) +2348160*a(n-17) +465152*a(n-18) -79872*a(n-19) -9216*a(n-20)
Comments