A269256 Chen primes p such that there are Chen primes p > q > r in arithmetic progression.
7, 11, 17, 19, 23, 29, 31, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 113, 127, 131, 137, 139, 149, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 347
Offset: 1
Keywords
Examples
19 is in the sequence since 3 < 11 < 19, 19 - 11 = 11 - 3, all three are prime, and 3+2, 11+2, and 19+2 are each either prime or semiprime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Ben Green and Terence Tao, Restriction theory of the Selberg sieve, with applications, Journal de théorie des nombres de Bordeaux 18:1 (2006), pp. 147-182.
Programs
-
PARI
issemi(n)=bigomega(n)==2 ischen(n)=isprime(n) && (isprime(n+2) || issemi(n+2)) is(n)=if(!ischen(n), return(0)); forprime(p=2,n-4, if((p+n)%4==2 && ischen(p) && ischen((p+n)/2), return(1))); 0
Comments