cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269259 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10 and p+2^12 are all primes.

This page as a plain text file.
%I A269259 #24 Sep 08 2022 08:46:15
%S A269259 37,163,15667,22093,40177,47287,53593,114577,120607,142543,234067,
%T A269259 242377,255907,263047,263803,305407,388117,444607,460387,503287,
%U A269259 527143,607093,671353,784897,904663,938947,1063903,1086493,1172803,1216807,1233523,1288543
%N A269259 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10 and p+2^12 are all primes.
%H A269259 Dana Jacobsen, <a href="/A269259/b269259.txt">Table of n, a(n) for n = 1..10476</a>
%e A269259 The prime 37 is in the sequence, since 37 + 16 = 53, 37 + 64 = 101, 37 + 256 = 293, 37 + 1024 = 1061 and 37 + 4096 = 4133 are all primes.
%e A269259 The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187 and 163 + 4096 = 4259 are all primes.
%t A269259 m = {2^4, 2^6, 2^8, 2^10, 2^12}; Select[Prime@ Range[2*10^5], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* _Michael De Vlieger_, Jul 13 2016 *)
%o A269259 (PARI) is(n) = for(k=2, 6, if(!ispseudoprime(2^(2*k)+n), return(0))); return(1)
%o A269259 forprime(p=1, 16e5, if(is(p), print1(p, ", "))) \\ _Felix Fröhlich_, Jul 12 2016
%o A269259 (Perl) use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256,1024,4096); # _Dana Jacobsen_, Jul 13 2016
%o A269259 (Magma) [p: p in PrimesInInterval(2,1600000) | forall{i: i in [16,64,256,1024,4096] | IsPrime(p+i)}]; // _Vincenzo Librandi_, Jul 16 2016
%Y A269259 Subsequence of A269258.
%Y A269259 Cf. A269257.
%K A269259 nonn
%O A269259 1,1
%A A269259 _Debapriyay Mukhopadhyay_, Jul 12 2016