cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269260 For index k = A269230(n), the least prime with k consecutive digits 0, divided by 10^(k+1) and rounded down.

Original entry on oeis.org

19, 10, 16, 16, 20, 30, 20, 15, 30, 26, 23, 27, 19, 17, 40, 30, 13, 13, 13, 24, 28, 22, 20, 10, 20, 30, 16, 10, 40, 13, 16, 11, 39, 10, 20, 20, 30, 10, 23, 16, 15, 30, 34, 56, 19, 28, 20, 20, 30, 20, 20, 90, 87, 68, 20, 25, 20, 16, 30, 40
Offset: 1

Views

Author

M. F. Hasler, Feb 22 2016

Keywords

Comments

For indices k not listed in A269230, the least prime with k digits '0', A037053(k), has these digits consecutively, in a single run. If k is listed in A269230, this is not the case (e.g., A037053(32) = 10...0603), and the most economical way to make a prime with k consecutive digits 0 is to put two (a priori nonzero) digits in front of the string of k '0's, i.e., p = a*10^(k+1) + b with a > 9.
This sequence lists these numbers a, and the corresponding prime (least prime with k consecutive digits 0) is simply nextprime(a*10^(k+1)).
If a is a multiple of 10, then b can have two nonzero digits, 11 <= b <= 99. Otherwise (b < 10), this prime is also the least prime with k+1 (consecutive) digits '0', A037053(k+1), and k+1 is listed in A085824 (unless a > 90). It is then obviously not the smallest prime with *exactly* k consecutive digits 0, but with *at least* k consecutive digits 0. This happens for (n,k,a,b) = (2,43,10,9), (24,108,10,7), (28,121,10,3), (34,132,10,7), (38,144,10,9), ...

Programs

  • PARI
    A269260(n,k=A269230(n))=for(a=1,9e9,nextprime(a*10^(k+1))-a*10^(k+1)<10^(valuation(a,10)+1)&&return(a)) \\ If the 2nd (optional) arg is given, the 1st arg 'n' is ignored. Otherwise the function A269230() must be defined.