This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269276 #4 Feb 21 2016 08:57:46 %S A269276 0,4,0,24,108,0,108,1368,1620,0,432,13896,46872,20412,0,1620,127512, %T A269276 1104264,1365336,236196,0,5832,1104264,23549400,74853576,36673560, %U A269276 2598156,0,20412,9211608,474819408,3719884392,4684312584,938176344 %N A269276 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once. %C A269276 Table starts %C A269276 .0........4..........24............108...............432................1620 %C A269276 .0......108........1368..........13896............127512.............1104264 %C A269276 .0.....1620.......46872........1104264..........23549400...........474819408 %C A269276 .0....20412.....1365336.......74853576........3719884392........174924572760 %C A269276 .0...236196....36673560.....4684312584......542973139128......59587625651904 %C A269276 .0..2598156...938176344...279339197256....75556007986536...19356924219624936 %C A269276 .0.27634932.23230366488.16128206816904.10181956012212600.6090616046325570480 %H A269276 R. H. Hardin, <a href="/A269276/b269276.txt">Table of n, a(n) for n = 1..241</a> %F A269276 Empirical for column k: %F A269276 k=1: a(n) = a(n-1) %F A269276 k=2: a(n) = 18*a(n-1) -81*a(n-2) %F A269276 k=3: a(n) = 42*a(n-1) -441*a(n-2) %F A269276 k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3 %F A269276 k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4) %F A269276 k=6: [order 6] for n>7 %F A269276 k=7: [order 10] for n>11 %F A269276 Empirical for row n: %F A269276 n=1: a(n) = 6*a(n-1) -9*a(n-2) %F A269276 n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4 %F A269276 n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7 %F A269276 n=4: [order 8] for n>12 %F A269276 n=5: [order 18] for n>23 %F A269276 n=6: [order 40] for n>46 %e A269276 Some solutions for n=3 k=4 %e A269276 ..0..2..0..1. .0..0..0..0. .0..2..0..0. .0..0..0..0. .0..0..2..0 %e A269276 ..0..2..3..1. .2..2..0..0. .2..2..3..1. .2..0..2..1. .0..2..2..3 %e A269276 ..2..1..0..2. .3..2..1..1. .0..1..0..2. .0..0..1..3. .3..1..1..0 %Y A269276 Row 1 is A120908. %K A269276 nonn,tabl %O A269276 1,2 %A A269276 _R. H. Hardin_, Feb 21 2016