A269289 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three no more than once.
4, 16, 16, 60, 216, 64, 216, 2124, 2592, 256, 756, 19188, 62748, 29160, 1024, 2592, 164556, 1363572, 1698732, 314928, 4096, 8748, 1363572, 27788292, 87559668, 43674876, 3306744, 16384, 29160, 11026764, 544118148, 4204943820, 5306911092
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..3..3. .0..2..3..1. .0..0..0..1. .0..2..2..2. .2..0..0..2 ..2..1..3..1. .2..1..0..2. .2..2..3..1. .0..2..0..0. .0..0..3..3 ..3..1..0..1. .1..0..2..0. .1..3..3..3. .2..0..0..2. .0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..241
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46
Comments