This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269301 #17 Dec 10 2016 19:41:38 %S A269301 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,3,1,1,3,1,1,1,1,1,1,1,1, %T A269301 1,1,1,1,1,1,3,3,1,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,5,5, %U A269301 1,1,1,1,5,5,1,1,1,1,5,5,1,1,1,1,5,1,1,1,1,1,1 %N A269301 Normalization coefficients for quantum Pascal's pyramid, numerators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!). %C A269301 Read by block by row, i.e., a( x(n,k,m) ) have x(n,k,m) = ( sum_{i=0}^n i^2 ) + k ( n + 1 ) + m and (n,k,m) >= 0. See comments in A268533 for relevance. %F A269301 T(n,k,m) = Numerator[((n - m)! m!)/(2^n (n - k)! k!)] %e A269301 First nontrivial block: %e A269301 1, 1, 1, 1 %e A269301 3, 1, 1, 3 %e A269301 3, 1, 1, 3 %e A269301 1, 1, 1, 1 %t A269301 NormFrac[Block_] := %t A269301 Outer[Function[{n, k, m}, ((n - m)! m!)/(2^n (n - k)! k!)][ %t A269301 Block, #1, #2] &, Range[0, Block], Range[0, Block], 1]; Flatten[ %t A269301 Numerator[NormFrac[#]] & /@ Range[0, 5]] %Y A269301 Denominators: A269302. Cf. A268533. %K A269301 nonn,frac %O A269301 0,19 %A A269301 _Bradley Klee_, Feb 22 2016