cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269302 Normalization coefficients for quantum Pascal's pyramid, denominators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!).

This page as a plain text file.
%I A269302 #17 Apr 17 2016 08:56:55
%S A269302 1,2,2,2,2,4,8,4,2,4,2,4,8,4,8,24,24,8,8,8,8,8,8,8,8,8,8,24,24,8,16,
%T A269302 64,96,64,16,4,16,24,16,4,8,32,16,32,8,4,16,24,16,4,16,64,96,64,16,32,
%U A269302 160,320,320,160,32,32,32,64,64,32,32,16,16,32,32,16,16,16,16,32,32,16,16,32,32,64,64,32,32,32,160,320,320,160,32
%N A269302 Normalization coefficients for quantum Pascal's pyramid, denominators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!).
%C A269302 Read by block by row, i.e., a( x(n,k,m) ) have x(n,k,m) = ( sum_{i=0}^n i^2 ) + k ( n + 1 ) + m and (n,k,m) >= 0. See comments in A268533 for relevance.
%F A269302 T(n,k,m) = Denominator[((n - m)! m!)/(2^n (n - k)! k!)]
%e A269302 First few blocks:
%e A269302 1
%e A269302 . . 2, 2
%e A269302 . . 2, 2
%e A269302 . . . . .  4, 8, 4
%e A269302 . . . . .  2, 4, 2
%e A269302 . . . . .  4, 8, 4
%t A269302 NormFrac[Block_] :=
%t A269302 Outer[Function[{n, k, m}, ((n - m)! m!)/(2^n (n - k)! k!)][
%t A269302     Block, #1, #2] &, Range[0, Block], Range[0, Block], 1]; Flatten[
%t A269302 Denominator[NormFrac[#]] & /@ Range[0, 5]]
%Y A269302 Numerators: A269301. Cf. A268533.
%K A269302 nonn,frac
%O A269302 0,2
%A A269302 _Bradley Klee_, Feb 22 2016