cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269307 Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.

This page as a plain text file.
%I A269307 #20 May 21 2019 22:07:07
%S A269307 17,28,31,44,51,132,133,198,208,2528,9241,13570,16577,177568,228742,
%T A269307 780889,878078,1854920,2775787,3663541,8204010,66326143,73734437,
%U A269307 164211532,670396359,803230921,832581731,1036125551,1572413223
%N A269307 Consider the sum of the divisors of a number x>1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
%C A269307 44 works in both directions: sigma(n) -> n and n -> sigma(n). See A269308.
%e A269307 Sigma(17) = 18 :   1 + 8 = 9;  8 + 9 = 17.
%e A269307 Sigma(133) = 160 :  1 + 6 + 0 = 7;  6 + 0 + 7 = 13;  0 + 7 + 13 = 20; 7 + 13 + 20 = 40;  13 + 20 + 40 = 73;  20 + 40 + 73 = 133.
%p A269307 with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
%p A269307 for n from 2 to q do a:=sigma(n); b:=ilog10(a)+1; if b>1 then
%p A269307 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
%p A269307 while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od;
%p A269307 if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000);
%t A269307 Select[Range[2,10^5], (t = #; d = IntegerDigits[DivisorSigma[1, #]]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* _Robert Price_, May 21 2019 *)
%Y A269307 Cf. A007629, A269308, A269309, A269310, A269311, A269312.
%K A269307 nonn,base,more
%O A269307 1,1
%A A269307 _Paolo P. Lava_, Feb 24 2016
%E A269307 a(20)-a(29) from _Lars Blomberg_, Jan 18 2018