A269309 Consider the Euler totient function of a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach x.
13, 21, 63, 177, 206, 412, 655, 824, 1990, 2637, 11438, 12485, 23846, 34132, 40528, 56202, 87539, 94597, 1288999, 3075239, 3106991, 20689503, 31173397, 46230492, 65889985, 79476719, 170859904, 266368503, 295845211, 420471958, 445169688, 797687940, 962257660
Offset: 1
Examples
phi(13) = 12 : 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13.
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h); for n from 2 to q do a:=phi(n); b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
Select[Range[10^5], EulerPhi[#] >= 10 && (d = IntegerDigits[EulerPhi[#]]; While[Total[d] < #, d = Join[Rest[d], {Total[d]}];]; Total[d] == #) &] (* Robert Price, May 21 2019 *)
Extensions
a(19)-a(33) from Lars Blomberg, Jan 18 2018