A269310 Consider a number x > 1. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the Euler totient function of x.
22, 44, 55, 88, 98, 136, 162, 166, 241, 462, 1020, 2040, 2416, 2899, 3060, 4080, 5110, 7942, 10738, 10996, 15006, 24822, 57040, 67054, 70625, 75588, 96888, 261524, 301834, 507471, 735840, 816584, 2893877, 6081064, 8155616, 16513570, 18772258, 40833543
Offset: 1
Examples
phi(22) = 10: 2 + 2 = 4; 2 + 4 = 6; 4 + 6 = 10.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..47
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h); for n from 2 to q do a:=n; b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
Select[Range[2,10^5], (t = EulerPhi[#]; d = IntegerDigits[#]; While[Total[d] < t, d = Join[Rest[d], {Total[d]}]]; Total[d] == t) &] (* Robert Price, May 17 2019 *)
Extensions
a(38) from Lars Blomberg, Jan 18 2018