A269312 Consider a number x. Take the sum of its digits. Repeat the process deleting the first addendum and adding the previous sum. The sequence lists the numbers that after some iterations reach the arithmetic derivative of x.
14, 51, 145, 285, 629, 708, 807, 1318, 2362, 2548, 2869, 3789, 4087, 4811, 6031, 6355, 10201, 15563, 17143, 17287, 17561, 19883, 20567, 21731, 22429, 23461, 26269, 27301, 30967, 33389, 69529, 73211, 85927, 86087, 90133, 96781, 110159, 116011, 159767, 161701, 162055, 190079
Offset: 1
Examples
14’ = 9 : 1 + 4 = 5; 4 + 5 = 9. 51’ = 20 : 5 + 1 = 6; 1 + 6 = 7; 6 + 7 = 13; 7 + 13 = 20.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..663
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,c,k,n,p,t,v; v:=array(1..h); for n from 1 to q do a:=n; b:=ilog10(a)+1; if b>1 then for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); while v[t]
-
Mathematica
dn[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@n]]]; (* after Michael Somos,Apr 12 2011 *) Select[Range[10^5], # >= 10 && (s = dn[#]; d = IntegerDigits[#]; While[Total[d] < s, d = Join[Rest[d], {Total[d]}]]; Total[d] == s) &] (* Robert Price, May 22 2019 *)