cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A269316 Intersection of A269315 and A269314.

Original entry on oeis.org

15, 24, 30, 258, 372, 645, 2076, 2268, 2385, 2505, 3045, 3090, 3120, 3336, 3366, 3450, 3555, 3678, 4122, 4143, 4233, 4302, 4497, 5118, 5202, 5586, 6717, 6855, 7662, 7731, 8082, 8130, 8340, 9177, 9648, 9759, 9795, 10080, 10242, 10545, 10830, 10926, 11001, 11130
Offset: 1

Views

Author

Paolo P. Lava, Feb 25 2016

Keywords

Comments

All terms are multiple of 3.

Examples

			15 = 1+4 + 1+3 + 1+2 + 1+1 + 1+0 = 1+6 + 1+7;
24 = 2+3 + 2+2 + 2+1 + 2+0 + 1+9 = 2+5 + 2+6 + 2+7;
30 = 2+9 + 2+8 + 2+7 = 3+1 + 3+2 + 3+3 + 3+4 + 3+5.
		

Crossrefs

Programs

  • Maple
    P:= proc(q) local a, b, c, k, n; for n from 1 to q do a:=0; b:=0;
    while a
    				
  • Mathematica
    A269314 = Select[Range[11130], (x = # + 1; s = Total[IntegerDigits[x]]; While[s < #, x++; s += Total[IntegerDigits[x]]]; s == #) &];
    A269315 = Select[Range[3,11130], (x = # - 1; s = Total[IntegerDigits[x]]; While[s < #, x--; s += Total[IntegerDigits[x]]]; s == #) &];
    Intersection[A269314, A269315] (* Robert Price, May 22 2019 *)

Extensions

Name corrected by Robert Price, May 22 2019

A269315 Numbers x that are the sum of the digits of some consecutive run of numbers x-1, x-2, x-3, ...

Original entry on oeis.org

3, 12, 15, 21, 24, 30, 33, 42, 51, 60, 69, 120, 135, 144, 150, 159, 168, 177, 186, 195, 210, 237, 243, 258, 267, 291, 300, 333, 342, 357, 372, 423, 447, 468, 492, 513, 540, 558, 579, 594, 603, 630, 645, 654, 660, 675, 720, 735, 747, 777, 792, 810, 825, 837, 873
Offset: 1

Views

Author

Paolo P. Lava, Feb 25 2016

Keywords

Comments

All terms are multiples of 3.

Examples

			3 = 2 + 1;
12 = 1+1 + 1+0 + 9;
15 = 1+4 + 1+3 + 1+2 + 1+1 + 1+0.
		

Crossrefs

Cf. A269314.

Programs

  • Maple
    P:= proc(q) local a,b,c,k,n; for n from 1 to q do a:=0; b:=0;
    while a
    				
  • Mathematica
    Select[Range[3,1000], (x = # - 1; s = Total[IntegerDigits[x]]; While[s < #, x--; s += Total[IntegerDigits[x]]]; s == #) &] (* Robert Price, May 22 2019 *)
Showing 1-2 of 2 results.