This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269385 #11 Mar 03 2016 22:51:22 %S A269385 1,2,4,3,8,9,6,5,16,21,18,19,12,15,10,7,32,45,42,49,36,51,38,31,24,33, %T A269385 30,35,20,27,14,11,64,93,90,109,84,123,98,85,72,105,102,125,76,111,62, %U A269385 55,48,69,66,79,60,87,70,59,40,57,54,65,28,39,22,13,128,189,186,229,180,267,218,191,168,249,246,305,196,291,170,151,144 %N A269385 Tree of Ludic sieve, mirrored: a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A269379(a(n)). %C A269385 Permutation of natural numbers obtained from the Ludic sieve. Note the indexing: Domain starts from 0, range from 1. %C A269385 This sequence can be represented as a binary tree. Each left hand child is obtained by doubling the parent's contents, and each right hand child is obtained by applying A269379 to the parent's contents: %C A269385 1 %C A269385 | %C A269385 ...................2................... %C A269385 4 3 %C A269385 8......../ \........9 6......../ \........5 %C A269385 / \ / \ / \ / \ %C A269385 / \ / \ / \ / \ %C A269385 / \ / \ / \ / \ %C A269385 16 21 18 19 12 15 10 7 %C A269385 32 45 42 49 36 51 38 31 24 33 30 35 20 27 14 11 %C A269385 etc. %C A269385 Sequence A269387 is obtained from the mirror image of the same tree. %H A269385 Antti Karttunen, <a href="/A269385/b269385.txt">Table of n, a(n) for n = 0..8191</a> %H A269385 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A269385 a(0) = 1, a(1) = 2; after which, a(2n) = 2*a(n), a(2n+1) = A269379(a(n)). %F A269385 As a composition of related permutations: %F A269385 a(n) = A269171(A252755(n)). %F A269385 a(n) = A260741(A269375(n)). %F A269385 Other identities. For all n >= 2: %F A269385 A000035(a(n)) = A000035(n). [This permutation preserves the parity of n from a(2)=4 onward.] %o A269385 (Scheme, with memoization-macro definec) %o A269385 (definec (A269385 n) (cond ((<= n 1) (+ n 1)) ((even? n) (* 2 (A269385 (/ n 2)))) (else (A269379 (A269385 (/ (- n 1) 2)))))) %Y A269385 Inverse: A269386. %Y A269385 Cf. A000035, A269379. %Y A269385 Cf. A003309 (right edge of the tree). %Y A269385 Related or similar permutations: A163511, A260741, A269387, A269171. %Y A269385 Cf. also A252755, A269375. %K A269385 nonn,tabf %O A269385 0,2 %A A269385 _Antti Karttunen_, Mar 01 2016