cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269398 Permutation of natural numbers: a(1) = 1, a(A179016(1+n)) = A233271(1+a(n)), a(A213713(n)) = A269390(a(n)), where A179016, A233271 are the infinite trunks of binary beanstalk and inverted binary beanstalk and A213713, A269390 are their complements.

This page as a plain text file.
%I A269398 #6 Mar 07 2016 12:30:56
%S A269398 1,3,2,7,6,5,4,16,13,11,15,10,9,26,12,8,22,19,49,25,18,17,38,40,20,31,
%T A269398 14,35,30,72,46,28,39,29,24,27,57,59,87,33,47,32,23,52,45,21,103,68,
%U A269398 71,43,58,44,60,37,41,83,186,85,123,50,69,48,82,56,36,76,53,67,34,144,128,98,101,143,65,84,66,63,86,55,106,61,118,253,42,121,169
%N A269398 Permutation of natural numbers: a(1) = 1, a(A179016(1+n)) = A233271(1+a(n)), a(A213713(n)) = A269390(a(n)), where A179016, A233271 are the infinite trunks of binary beanstalk and inverted binary beanstalk and A213713, A269390 are their complements.
%H A269398 Antti Karttunen, <a href="/A269398/b269398.txt">Table of n, a(n) for n = 1..6089</a>
%H A269398 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A269398 a(1) = 1, for n > 1, if A213719(n) = 1 [when n is in A179016] a(n) = A233271(1+a(A269371(n)-1)), otherwise a(n) = 1 + A269390(a(n-A269371(n))).
%F A269398 As a composition of related permutations:
%F A269398 a(n) = A269392(A269401(n)).
%o A269398 (Scheme, with memoization-macro definec)
%o A269398 (definec (A269398 n) (cond ((<= n 1) n) ((zero? (A213719 n)) (A269390 (A269398 (- n (A269371 n))))) (else (A233271 (+ 1 (A269398 (+ -1 (A269371 n))))))))
%Y A269398 Inverse: A269397
%Y A269398 Cf. A179016, A213713, A213719, A233271, A269390.
%Y A269398 Related or similar permutations: A269392, A269401, A269402.
%Y A269398 Cf. also A233270.
%K A269398 nonn,base
%O A269398 1,2
%A A269398 _Antti Karttunen_, Mar 05 2016