A269405 Number of length-n 0..4 arrays with no repeated value greater than or equal to the previous repeated value.
5, 25, 120, 570, 2670, 12380, 56890, 259445, 1175355, 5293671, 23718780, 105781845, 469798125, 2078552055, 9164402118, 40277785365, 176503698495, 771372344695, 3362640467600, 14624384170213, 63463229049585, 274836205944615
Offset: 1
Keywords
Examples
Some solutions for n=7: ..2. .1. .4. .2. .0. .1. .3. .1. .2. .0. .2. .3. .4. .4. .4. .0 ..4. .0. .3. .1. .2. .4. .1. .0. .4. .2. .3. .2. .3. .2. .3. .0 ..1. .3. .2. .3. .0. .4. .0. .4. .2. .0. .0. .0. .0. .3. .4. .2 ..4. .4. .0. .1. .4. .1. .0. .0. .2. .0. .3. .2. .3. .1. .3. .3 ..2. .2. .3. .2. .2. .2. .1. .2. .3. .4. .0. .3. .4. .4. .2. .4 ..4. .2. .2. .4. .2. .0. .0. .3. .0. .2. .0. .1. .1. .3. .0. .2 ..2. .1. .4. .4. .0. .4. .4. .2. .4. .0. .4. .0. .4. .4. .3. .0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269409
Formula
Empirical: a(n) = 20*a(n-1) - 150*a(n-2) + 460*a(n-3) - 65*a(n-4) - 2472*a(n-5) + 2320*a(n-6) + 6400*a(n-7) - 3840*a(n-8) - 10240*a(n-9) - 4096*a(n-10).
Empirical g.f.: x*(5 - 75*x + 370*x^2 - 380*x^3 - 1905*x^4 + 3265*x^5 + 5590*x^6 - 5865*x^7 - 11455*x^8 - 4339*x^9) / ((1 + x)^4*(1 - 4*x)^6). - Colin Barker, Jan 21 2019