cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269412 Number of length-6 0..n arrays with no repeated value greater than or equal to the previous repeated value.

Original entry on oeis.org

16, 394, 2872, 12380, 39560, 104006, 238224, 492312, 939360, 1681570, 2857096, 4647604, 7286552, 11068190, 16357280, 23599536, 33332784, 46198842, 62956120, 84492940, 111841576, 146193014, 188912432, 241555400, 305884800, 383888466
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2016

Keywords

Examples

			Some solutions for n=6:
..3. .2. .5. .5. .1. .3. .3. .2. .5. .4. .1. .5. .0. .5. .2. .3
..5. .6. .2. .4. .0. .6. .6. .4. .1. .5. .6. .0. .3. .1. .0. .3
..4. .3. .6. .0. .4. .5. .3. .5. .0. .4. .1. .2. .2. .2. .6. .2
..5. .1. .4. .5. .1. .0. .4. .1. .0. .5. .0. .5. .6. .3. .2. .6
..3. .2. .5. .6. .4. .3. .5. .1. .5. .2. .4. .2. .2. .5. .0. .2
..1. .3. .4. .5. .1. .0. .0. .4. .1. .5. .3. .2. .5. .5. .3. .5
		

Crossrefs

Row 6 of A269409.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 8*n^4 + (5/3)*n^3 - n^2 + (1/3)*n.
Conjectures from Colin Barker, Jan 21 2019: (Start)
G.f.: 2*x*(8 + 141*x + 225*x^2 - 5*x^3 - 9*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)