A269413 Number of length-7 0..n arrays with no repeated value greater than or equal to the previous repeated value.
20, 957, 10132, 56890, 223320, 695135, 1837752, 4302612, 9168780, 18124865, 33696300, 59523022, 100692592, 164133795, 259075760, 397577640, 595133892, 871360197, 1250765060, 1763612130, 2446878280, 3345312487, 4512600552
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2. .3. .1. .2. .4. .1. .4. .0. .2. .2. .0. .1. .0. .3. .4. .0 ..2. .4. .2. .3. .4. .3. .1. .4. .3. .3. .3. .0. .2. .0. .4. .0 ..1. .1. .1. .0. .3. .0. .2. .2. .4. .0. .3. .1. .3. .1. .1. .4 ..2. .3. .3. .3. .3. .0. .4. .1. .4. .1. .2. .1. .2. .4. .4. .0 ..3. .4. .4. .3. .0. .3. .0. .2. .2. .2. .0. .0. .0. .2. .0. .4 ..1. .0. .1. .2. .2. .2. .2. .0. .4. .4. .3. .0. .2. .0. .4. .1 ..0. .4. .1. .0. .4. .1. .1. .1. .1. .0. .0. .1. .4. .2. .3. .3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 7 of A269409.
Formula
Empirical: a(n) = n^7 + 7*n^6 + 11*n^5 + (8/3)*n^4 - (11/6)*n^3 + (1/3)*n^2 - (1/6)*n.
Conjectures from Colin Barker, Jan 21 2019: (Start)
G.f.: x*(20 + 797*x + 3036*x^2 + 1510*x^3 - 296*x^4 - 27*x^5) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)