This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269419 #33 Oct 23 2018 10:33:00 %S A269419 1,48,4608,55296,42467328,84934656,21743271936,36691771392, %T A269419 400771988324352,1352605460594688,16620815899787526144, %U A269419 779100745302540288,153177439332441840943104,2393397489569403764736,235280546814630667688607744,57441539749665690353664 %N A269419 a(n) is denominator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1. %H A269419 Gheorghe Coserea, <a href="/A269419/b269419.txt">Table of n, a(n) for n = 0..500</a> %H A269419 Edward A. Bender, Zhicheng Gao, L. Bruce Richmond, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r51"> The map asymptotics constant tg</a>, The Electronic Journal of Combinatorics, Volume 15 (2008), Research Paper #R51. %H A269419 Stavros Garoufalidis, Thang T.Q. Le, Marcos Marino, <a href="http://arxiv.org/abs/0809.2572">Analyticity of the Free Energy of a Closed 3-Manifold</a>, arXiv:0809.2572 [math.GT], 2008. %F A269419 t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)), where t(g) is the orientable map asymptotics constant and gamma is the Gamma function. %e A269419 For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi). %e A269419 For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2)) = 1/24. %e A269419 n y(n) t(n) %e A269419 0 -1 2/sqrt(Pi) %e A269419 1 1/48 1/24 %e A269419 2 49/4608 7/(4320*sqrt(Pi)) %e A269419 3 1225/55296 245/15925248 %e A269419 4 4412401/42467328 37079/(96074035200*sqrt(Pi)) %e A269419 5 73560025/84934656 38213/14089640214528 %e A269419 6 245229441961/21743271936 5004682489/(92499927372103680000*sqrt(Pi)) %e A269419 7 7759635184525/36691771392 6334396069/20054053184087387013120 %e A269419 ... %t A269419 y[0] = -1; %t A269419 y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}]; %t A269419 Table[y[n] // Denominator, {n, 0, 15}] (* _Jean-François Alcover_, Oct 23 2018 *) %o A269419 (PARI) %o A269419 seq(n) = { %o A269419 my(y = vector(n)); %o A269419 y[1] = 1/48; %o A269419 for (g = 1, n-1, %o A269419 y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k])); %o A269419 return(concat(-1,y)); %o A269419 } %o A269419 apply(denominator, seq(14)) %Y A269419 Cf. A266240, A269418 (numerator). %K A269419 nonn,frac %O A269419 0,2 %A A269419 _Gheorghe Coserea_, Feb 25 2016