This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269427 #39 Jan 01 2020 22:02:59 %S A269427 1,1,2,1,4,1,3,2,4,3,3,1,7,4,2,1,7,3,4,3,4,2,6,5,7,3,2,1,10,1,6,5,6,3, %T A269427 3,2,8,5,6,2,5,4,6,3,6,7,6,1,10,3,3,3,9,3,5,3,7,5,8,3,7,4,6,3,5,4,7,6, %U A269427 7,3,4,3,9,8,7,3,6,1,6,5,6 %N A269427 a(1) = 1, a(n) counts m < n for which n == a(m) (mod m). %C A269427 I conjecture that this sequence is unbounded. Consider the first k terms of this sequence, and let L be the floor of log(k). If we count the times that each number 1,2,...,2L appears among the first k terms of this sequence, it appears that these sums form a normal distribution centered at L, so that L appears approximately k/10 times among the first k terms of this sequence. (For instance, in the first k = 10000 terms of the sequence, L = log(10000) = 9 appears 1174 times, a maximal count among any value that appears at all.) Thus the sequence appears to be unbounded. %C A269427 The sequence is unbounded. For any k, consider k pairwise coprime integers m_1, ..., m_k. By the Chinese Remainder Theorem, there are infinitely many n such that n == a(m_j) (mod m_j) for each j, and thus a(n) >= k. - _Robert Israel_, Mar 21 2016 %H A269427 Peter Kagey, <a href="/A269427/b269427.txt">Table of n, a(n) for n = 1..10000</a> %e A269427 a(1) = 1; %e A269427 a(2) = 1 because 2 == a(1) (mod 1); %e A269427 a(3) = 2 because 3 == a(1) (mod 1) and 3 == a(2) (mod 2); %e A269427 a(4) = 1 because 4 == a(1) (mod 1); %e A269427 a(5) = 4 because 5 == a(1) (mod 1), 5 == a(2) (mod 2), 5 == a(3) (mod 3), and 5 == a(4) (mod 4). %p A269427 N:= 200: # to get a(1) to a(N) %p A269427 A:= Vector(N,1): %p A269427 for m from 2 to N-1 do %p A269427 S:= [seq(A[m]+m*i,i=1..floor((N-A[m])/m))]; %p A269427 A[S]:= map(`+`,A[S],1); %p A269427 od: %p A269427 convert(A,list); # _Robert Israel_, Mar 21 2016 %t A269427 a[1] = 1; a[n_] := a[n] = Count[Range[n - 1], m_ /; Mod[a[m], m] == Mod[n, m]]; Table[a@ n, {n, 81}] (* _Michael De Vlieger_, Mar 21 2016 *) %o A269427 (Java) %o A269427 int[] terms = new int[10000]; %o A269427 terms[0] = 1; %o A269427 for (int i = 1; i < 10000; i++) { %o A269427 int count = 0; %o A269427 for (int j = 0; j < i; j++) { %o A269427 if (((i+1) - terms[j]) % (j+1) == 0) { %o A269427 count++; %o A269427 } %o A269427 } %o A269427 terms[i] = count; %o A269427 } %o A269427 (PARI) lista(nn) = {va = vector(nn); print1(va[1] = 1, ", "); for (n=2, nn, va[n] = sum(m=1, n-1, (Mod(va[m], m) == Mod(n, m))); print1(va[n], ", "););} \\ _Michel Marcus_, Feb 26 2016 %Y A269427 Cf. A269423. %K A269427 easy,nonn %O A269427 1,3 %A A269427 _Alec Jones_, Feb 25 2016