A269431 Number of length-n 0..4 arrays with no repeated value greater than the previous repeated value.
5, 25, 125, 615, 2995, 14455, 69235, 329430, 1558430, 7334806, 34364270, 160340610, 745362730, 3453222850, 15949215754, 73454841775, 337413819915, 1546145183895, 7068979186035, 32251365241137, 146853223312325, 667445619383425
Offset: 1
Keywords
Examples
Some solutions for n=7: ..3. .2. .3. .4. .2. .3. .1. .1. .1. .3. .0. .2. .0. .0. .0. .0 ..1. .1. .3. .1. .1. .2. .2. .3. .3. .2. .0. .2. .1. .1. .0. .3 ..4. .3. .4. .1. .0. .0. .2. .3. .1. .0. .2. .0. .4. .0. .0. .4 ..1. .2. .2. .0. .2. .2. .0. .4. .0. .0. .4. .4. .2. .2. .2. .4 ..1. .2. .1. .1. .2. .1. .4. .0. .2. .0. .0. .1. .4. .4. .1. .2 ..0. .4. .4. .1. .4. .0. .0. .3. .4. .1. .2. .2. .0. .3. .0. .4 ..4. .3. .3. .4. .3. .4. .2. .0. .2. .2. .1. .4. .4. .2. .4. .0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A269435.
Formula
Empirical: a(n) = 20*a(n-1) - 155*a(n-2) + 560*a(n-3) - 810*a(n-4) - 136*a(n-5) + 810*a(n-6) + 560*a(n-7) + 155*a(n-8) + 20*a(n-9) + a(n-10).
Empirical g.f.: x*(5 - 75*x + 400*x^2 - 810*x^3 + 120*x^4 + 810*x^5 + 560*x^6 + 155*x^7 + 20*x^8 + x^9) / (1 - 4*x - x^2)^5. - Colin Barker, Jan 21 2019