A269436 Number of length-4 0..n arrays with no repeated value greater than the previous repeated value.
15, 78, 250, 615, 1281, 2380, 4068, 6525, 9955, 14586, 20670, 28483, 38325, 50520, 65416, 83385, 104823, 130150, 159810, 194271, 234025, 279588, 331500, 390325, 456651, 531090, 614278, 706875, 809565, 923056, 1048080, 1185393, 1335775
Offset: 1
Keywords
Examples
Some solutions for n=8: ..7. .8. .1. .4. .8. .5. .6. .6. .7. .0. .7. .7. .8. .5. .5. .0 ..6. .3. .6. .3. .5. .3. .2. .4. .2. .7. .6. .1. .3. .3. .7. .3 ..3. .8. .5. .0. .4. .7. .2. .7. .4. .7. .7. .2. .5. .0. .2. .4 ..7. .2. .7. .0. .2. .1. .3. .4. .0. .8. .4. .6. .5. .0. .8. .1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A269435.
Formula
Empirical: a(n) = n^4 + 4*n^3 + (11/2)*n^2 + (7/2)*n + 1.
Conjectures from Colin Barker, Jan 22 2019: (Start)
G.f.: x*(15 + 3*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)