cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269439 Number of length-7 0..n arrays with no repeated value greater than the previous repeated value.

Original entry on oeis.org

92, 1722, 13868, 69235, 255576, 767172, 1981512, 4566213, 9621220, 18861326, 34844052, 61247927, 103206208, 167701080, 264023376, 404302857, 604114092, 883162978, 1266058940, 1783177851, 2471620712, 3376273132, 4550970648
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2016

Keywords

Examples

			Some solutions for n=4:
..2. .3. .0. .2. .1. .4. .0. .3. .4. .0. .1. .2. .0. .4. .3. .4
..2. .2. .1. .0. .2. .4. .1. .1. .3. .3. .4. .1. .4. .0. .0. .1
..0. .4. .0. .2. .1. .3. .2. .0. .4. .2. .3. .3. .2. .1. .2. .2
..0. .1. .4. .3. .2. .4. .3. .4. .2. .3. .0. .1. .0. .4. .4. .3
..4. .1. .4. .3. .4. .2. .3. .0. .2. .1. .2. .0. .3. .1. .1. .0
..2. .0. .1. .2. .3. .1. .2. .0. .3. .3. .0. .1. .3. .4. .2. .3
..3. .1. .4. .4. .2. .4. .0. .3. .2. .0. .3. .3. .1. .1. .3. .4
		

Crossrefs

Row 7 of A269435.

Formula

Empirical: a(n) = n^7 + 7*n^6 + 16*n^5 + (71/3)*n^4 + (139/6)*n^3 + (43/3)*n^2 + (35/6)*n + 1.
Conjectures from Colin Barker, Jan 22 2019: (Start)
G.f.: x*(92 + 986*x + 2668*x^2 + 1355*x^3 + 8*x^4 - 76*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)