cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269443 Continued fraction expansion of the Dirichlet eta function at 2.

This page as a plain text file.
%I A269443 #11 Feb 16 2025 08:33:30
%S A269443 0,1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4,1,6,3,7,1,7,3,3,2,4,2,2,
%T A269443 1,1,2,1,1,3,2,1,5,1,3,1,2,1,1,13,40,1,1,1,48,211,4,91,1,16,9,1,10,8,
%U A269443 2,4,1,2,3,2,1,1,13,3,1,2,2,1,3,1,18,2,1,1,1,5,3,7,1,1,21,1,6,4,1,1,2,1,3,2
%N A269443 Continued fraction expansion of the Dirichlet eta function at 2.
%C A269443 Continued fraction expansion of Sum_{k>=1} (-1)^(k-1)/k^2 = Zeta(2)/2 = Pi^2/12 = 0.8224670334241132182362...
%H A269443 OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>
%H A269443 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%H A269443 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>
%H A269443 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e A269443 1/1^2 - 1/2^2 + 1/3^2 - 1/4^2 + 1/5^2 - 1/6^2 +... = 1/(1 + 1/(4 + 1/(1 + 1/(1 + 1/(1 + 1/(2 + 1/...)))))).
%t A269443 ContinuedFraction[Pi^2/12, 100]
%o A269443 (PARI) contfrac(Pi^2/12) \\ _Michel Marcus_, Feb 26 2016
%Y A269443 Cf. A013679, A072691.
%K A269443 nonn,cofr
%O A269443 0,3
%A A269443 _Ilya Gutkovskiy_, Feb 26 2016