This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269444 #9 Feb 16 2025 08:33:30 %S A269444 0,1,9,6,2,1,1,1,1,1,1,6,1,4,1,7,2,1,1,1,2,91,32,1,1,6,23,1,1,1,1,2,9, %T A269444 1,2,1,1,5,1,1,37,12,1,12,3,2,87,1,4,2,2,2,320,1,7,1,2,6,3,1,6,4,1,4, %U A269444 2,1,69,1,4,3,3,1,14,3,1,3,1,10,2,694,2,4,21,1,1,1,3,3,10,2,1,2,2,1,3,5,1,3,9,1 %N A269444 Continued fraction expansion of the Dirichlet eta function at 3. %C A269444 Continued fraction expansion of Sum_{k>=1} (-1)^(k - 1)/k^3 = (3*zeta(3))/4 = 0.901542677369695714... %H A269444 OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a> %H A269444 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a> %H A269444 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a> %H A269444 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A269444 1/1^3 - 1/2^3 + 1/3^3 - 1/4^3 + 1/5^3 - 1/6^3 +... = 1/(1 + 1/(9 + 1/(6 + 1/(2 + 1/(1 + 1/(1 + 1/...)))))). %t A269444 ContinuedFraction[(3 Zeta[3])/4, 100] %Y A269444 Cf. A013631, A197070. %K A269444 nonn,cofr %O A269444 0,3 %A A269444 _Ilya Gutkovskiy_, Feb 26 2016