cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269444 Continued fraction expansion of the Dirichlet eta function at 3.

This page as a plain text file.
%I A269444 #9 Feb 16 2025 08:33:30
%S A269444 0,1,9,6,2,1,1,1,1,1,1,6,1,4,1,7,2,1,1,1,2,91,32,1,1,6,23,1,1,1,1,2,9,
%T A269444 1,2,1,1,5,1,1,37,12,1,12,3,2,87,1,4,2,2,2,320,1,7,1,2,6,3,1,6,4,1,4,
%U A269444 2,1,69,1,4,3,3,1,14,3,1,3,1,10,2,694,2,4,21,1,1,1,3,3,10,2,1,2,2,1,3,5,1,3,9,1
%N A269444 Continued fraction expansion of the Dirichlet eta function at 3.
%C A269444 Continued fraction expansion of Sum_{k>=1} (-1)^(k - 1)/k^3 = (3*zeta(3))/4 = 0.901542677369695714...
%H A269444 OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>
%H A269444 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%H A269444 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>
%H A269444 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e A269444 1/1^3 - 1/2^3 + 1/3^3 - 1/4^3 + 1/5^3 - 1/6^3 +... = 1/(1 + 1/(9 + 1/(6 + 1/(2 + 1/(1 + 1/(1 + 1/...)))))).
%t A269444 ContinuedFraction[(3 Zeta[3])/4, 100]
%Y A269444 Cf. A013631, A197070.
%K A269444 nonn,cofr
%O A269444 0,3
%A A269444 _Ilya Gutkovskiy_, Feb 26 2016