cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269448 The first of 26 consecutive positive integers the sum of the squares of which is a square.

This page as a plain text file.
%I A269448 #26 Aug 30 2016 05:23:13
%S A269448 25,301,454,3850,31966,47569,393925,3261481,4852834,40177750,
%T A269448 332640346,494942749,4097737825,33926055061,50479308814,417929081650,
%U A269448 3460124977126,5148394557529,42624668591725,352898821613041,525085765560394,4347298267275550
%N A269448 The first of 26 consecutive positive integers the sum of the squares of which is a square.
%C A269448 Positive integers y in the solutions to 2*x^2-52*y^2-1300*y-11050 = 0.
%C A269448 All sequences of this type (i.e. sequences with fixed offset k, and a discernible pattern: k=0...25 for this sequence,  k=0...22 for A269447, k=0..1 for A001652) can be continued using a formula such as x(n) = a*x(n-p) - x(n-2p) + b, where a and b are various constants, and p is the period of the series. Alternatively 'p' can be considered the number of concurrent series. - _Daniel Mondot_, Aug 05 2016
%H A269448 Colin Barker, <a href="/A269448/b269448.txt">Table of n, a(n) for n = 1..1000</a>
%H A269448 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,102,-102,0,-1,1).
%F A269448 G.f.: x*(25+276*x+153*x^2+846*x^3-36*x^4-3*x^5-11*x^6) / ((1-x)*(1-102*x^3+x^6)).
%F A269448 a(1)=25, a(2)=301, a(3)=454, a(4)=3850, a(5)=31966, a(6)=47569, a(n)=102*a(n-3) - a(n-6) + 1250. - _Daniel Mondot_, Aug 05 2016
%e A269448 25 is in the sequence because sum(k=25, 50, k^2) = 38025 = 195^2.
%t A269448 Rest@ CoefficientList[Series[x (25 + 276 x + 153 x^2 + 846 x^3 - 36 x^4 - 3 x^5 - 11 x^6)/((1 - x) (1 - 102 x^3 + x^6)), {x, 0, 22}], x] (* _Michael De Vlieger_, Aug 07 2016 *)
%o A269448 (PARI) Vec(x*(25+276*x+153*x^2+846*x^3-36*x^4-3*x^5-11*x^6)/((1-x)*(1-102*x^3+x^6)) + O(x^30))
%Y A269448 Cf. A001032, A001652, A094196, A106521, A257765, A269447, A269449, A269451.
%K A269448 nonn,easy
%O A269448 1,1
%A A269448 _Colin Barker_, Feb 27 2016